

Heikki Ojamo
Prof. / bioprocess engineering

M.Sc. (Tech.) Markus Räsänen Tohtorikoulutettava

Fermentation of the fractions from silage processing

Fractions studied

1. Silage juice

 Applicability as a replacer for high-value, complex components in growth media for industrially relevant microbes (University of Oulu / Laboratory of bioprocess engineering)

2. Hydrolyzate from extracted silage

- Feed protein production in Pekilo-fermentation
- Applicability of the hydrolyzate as C/energy source for Pekilo
- Requirements of supplementary nutrients in fermentation
- Techno-economic parameters for the fermentation process

Silage juice as a component in growth media

- 1. Inhibitory effects of weak organic acids (lactic/formic/acetic acids)
 - E.coli and Bacillus subtilis: 100 % inhibition of growth with 50 % juice concentration (replacing water)
 - L.rhamnosus, S.cerevisiae and Pichia pastoris: growth and glucose consumption slow down and cellmass yield decreases by 25...50 %

2. Nutrients in the juice

- *L.rhamnosus, S.cerevisiae* and *P.pastoris* grow on the juice without any supplementary nutrients (peptone and yeast extract)
- The addition of peptone and/or yeast extract into the juice have no effect on growth, rate of glucose consumption or cellmass yield

=> Silage produced with enzyme treatment probably would produce juice applicable as a nutrient source in media for growing microbes

- 1. Why Pekilo (Paecilomyces variotii)?
 - Hydrolytic fungus
 - Tolerates inhibitors in hydrolyzates better than e.g. yeasts
 - Is even able to use furfural and HMF as C/energy source
 - A filamentous organism => easy to filtrate out from the broth to high dry substance (30 % +)
 - Long history of use as SCP-product and approved feed component
 - Protein content 50 60 %

- 1. Inhibitory effect of the process fractions
 - Hydrolyzate/extract –combination increases remarkably lag-time
 - The effect can be avoided by adaptation to the fractions (→ hydrolyzate 1:5 = appr. 100 g/L glucose)

2. Consumption of glucose and acids in fermentation

In a fed-batch fermentation the final cell dry weight concentration was 37 g/L and cellmass yiedl on glucose was 0,49 g/g (0,49 – 0,67 g/g)

3. Need for supplementary nutrients

 The xtract can be replaced with e.g. CSL (5 g/25 g glucose) and diammoniumhydrogen phosphate (5 g/25 g glucose)

4. Specific growth rate ($\mu = dX/(X dt)$)

- Based on fed-batch experiments µ → 0,16 h⁻¹
- Continuous chemostat cultivation experiments done μ → 0,12 h⁻¹ with max. glucose concentration 30 g/L limited by the oxygen transfer capacity of the fermentor and practical arrangements in small-scale (appr. 2-fold value achievable in large-scale meaning volumetric cellmass productivity appr. 3,7 g/Lh]

5. Asepticity

Continuous fermentation was run > 500 h without any contamination

6. Techno-economic parameters

- Continuous fermentation; residence time ≥ 6 h
- Cellmass volumetric productivity 3,7 g/Lh
- Cellmass yield on glucose 0,5 g/g
- Cellmass yield on oxygen 0,85 g/g
- Working volume of the fermentor 80 m³
- Annual productivity of dry Pekilo 2400 t
- CSL and diammoniumhydrogen phosphate consumption appr. 500 t/a
- Power consumption in fermentation 5 000 MWh/a

